

Impact of Mutations in hVISA Isolates on Decreased Susceptibility to Vancomycin, Through Population Analyses Profile - Area Under Curve (PAP-AUC)

Alessandro C. O. Silveira

Introduction

- □ Heterogeneous resistance
- **Expression in subpopulations (1 in 10⁶)**
- Independent of the MIC and other mecanisms
- **Small Colony Variants (SCV)**
- Nutritionally demanding
- **Slower growth**
- □ Selective pressure required
- □ Intermediate stage for VISA

Challenges

- There are no breakpoints in CLSI and EUCAST for testing vancomycyn for disk diffusion
- hVISA is not detected by traditional phenotypic methods and there are also no reliable molecular markers
- □ The presence of mutations in target genes is not always associated with phenotypic expression → "Molecular Koch Postulates"

Methods

Table 2: Parameters of the main screening tests for the detection of hVISA.

Methodology	Sensitivity	Specificity	PPV ^a	NPV ^b	Accuracy
Etest GRD ^c	66.7%	97.3%	72.3%	96.5%	94.3%
Etestmacromethod	75%	94.6%	60%	97.2%	92.7%
Agar screening ^d	90.9%	93.8%	58.8%	99.1%	93.5%

- Positive predictive value
- b– Negative predictive value
- ^c– Etest glycopeptides resistance detection[®]
- ^d– Agar screening in brain-heart infusion (BHI) with 4 μg/mL vancomycin and 16 g/L pancreatic digest of casein

Prediffusion

Diagnostic Microbiology and Infectious Disease 79 (2014) 401-404

Bacteriology

Is prediffusion test an alternative to improve accuracy in screening hVISA strains and to detect susceptibility to glycopeptides/lipopeptides?

Alessandro Conrado de Oliveira Silveira ^{a,b,*}, Gustavo Enck Sambrano ^a, Thiago Galvão da Silva Paim ^a, Juliana Caierão ^a, Caio Mauricio Mendes de Cordova ^b, Pedro Alves d'Azevedo ^a

^a Federal University of Health Sciences of Porto Alegre, RS, Brazil

b University Regional of Blumenau, SC, Brazil

CrossMark

Prediffusion

Sensibility – 91.7 %

Specificity – 83.1 %

Prediffusion

The high negative predictive value (97.1%) allows for testing negative, excluding the possibility of that the phenotype. Taking into account that all positive screening tests should be confirmed with PAP-AUC, the prediffusion method, as a simple and low-cost test, should be considered not only as a useful test to assess the susceptibility of S. aureus to glycopeptides, but also as a screening test for hVISA.

Molecular epidemiology

BRAZ J INFECT DIS. 2015;19(5):466-472

Original article

Molecular epidemiology of heteroresistant vancomycin-intermediate Staphylococcus aureus in Brazil

Alessandro Conrado de Oliveira Silveira^{a,b,*}, Gabriela Rosa da Cunha^a, Juliana Caierão^a, Caio Mauricio Mendes de Cordova^b, Pedro Alves d'Azevedo^a

^a Laboratório de Cocos Gram Positivos, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil

^b Departamento de Ciências Farmacêuticas, Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil

Molecular epidemiology

Table 1 – Epidemiological and clinical characteristics of the 12 hVISA isolates.							
Isolate number	City	Institution	Clinical sample	SCCmec	Clone	Date	
10	Florianópolis	Hospital A	Osteomyelitis	III	Non clonal	23/11/2009	
36	Florianópolis	Hospital A	Tracheal aspirate	II	В	03/09/2010	
43	Florianópolis	Hospital A	Surgical wound	III	Non clonal	14/10/2010	
54	Florianópolis	Hospital A	Osteomyelitis	II	Α	04/05/2011	
69	Florianópolis	Hospital A	Osteomyelitis	II	Α	01/07/2011	
74	Florianópolis	Hospital B	Skin lesion	IVc	Non clonal	22/12/2011	
80	Florianópolis	Clinic A	Tracheal aspirate	II	В	09/01/2012	
84	Florianópolis	Hospital A	Tracheal aspirate	I	Non clonal	25/02/2012	
92	Florianópolis	Hospital C	Tracheal aspirate	II	Α	18/08/2012	
SI4	Blumenau	Hospital D	Blood	I,II	Α	28/09/2010	
SI11	Blumenau	Hospital D	Tracheal aspirate	II	Non clonal	20/02/2011	
SI13	Blumenau	Hospital D	Osteomyelitis	III	Non clonal	12/04/2011	

Complete Genome

Complete Genome Sequence of *Staphylococcus aureus* FCFHV36, a Methicillin-Resistant Strain Heterogeneously Resistant to Vancomycin

John Anthony McCulloch,^a Alessandro Conrado de Oliveira Silveira,^b Aline da Costa Lima Moraes,^c Paula Juliana Pérez-Chaparro,^d Manoella Ferreira Silva,^a Lara Mendes Almeida,^a Pedro Alves d'Azevedo,^e Elsa Masae Mamizuka^a

Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil^a; Department of Pharmaceutical Sciences, Regional University of Blumenau, Blumenau, Santa Catarina, Brazil^b; Department of Plant Biology, Biology Institute, State University of Campinas, Campinas, São Paulo, Brazil^c; Department of Periodontology, Dental Research Division, University of Guarulhos, Guarulhos, São Paulo, Brazil^d; Department of Microbiology and Parasitology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil^e

We report here the sequence of the entire chromosome of *Staphylococcus aureus* strain FCFHV36, a methicillin-resistant strain heterogeneously intermediate to vancomycin, bearing a type II staphylococcal chromosome cassette *mec* element (SCC*mec*), belonging to multilocus sequence type (MLST) 105, and isolated from a vertebra of a patient with osteomyelitis.

July/August 2015 Volume 3 Issue 4 e00893-15

Genome Announcements

genomea.asm.org 1

Present Study - Methods

- Mutations were evaluated in ten clinical isolates of hVISA, from the state of Santa Catarina, Southern Brazil
- Sequences were analyzed on MiSeq equipment (Illumina, Inc) and compared by BioEdit Sequence Alignment Editor version 7.2.5, using as reference the VSSA isolate sequenced in this study and strain VSSA N315 (GenBank BA00018.3)
- Mutations in four target-genes were evaluated, before exposure to 2 μg/mL of vancomycin, and related to phenotypic expression by Population Analyses Profile - Area Under Curve (PAP-AUC)
 - □ walKR
 - □ vraSR
 - □ graSR
 - 🗆 гроВ

1 - *hu* (161 bp); 2 - *pta* (193 bp); 3 - *tpi* (173 bp); 4 - *gyr*B (153 bp); 5- *gra*SR (196 bp); 6 - *vra*SR (149 bp); 7 - *wal*KR (188 bp); 8 - *rpo*B (153 bp); 9 – molecular size standard(100 bp).

Mutations in graS and graR

Mutations in *wal*K

JUNE 1-5 = NEW ORLEANS

Mutations in rpoB

Mutations in vraSR

No silent mutations were found in *vra*SR No mutations were observed in *vra*S

Results

- Eight mutations were found in graSR genes, one in the vraSR gene, four in the walKR gene and three in the rpoB gene.
- The most prevalent mutations were graSR T224I and rpoB H481N, followed by graSR D148Q and walKR A468T mutations.
- Considering the response profile to vancomycin, there was a statistically significant increase (p <0.05), after induction of vancomycin resistance, in three isolates.

JUNE 1-5 = NEW ORLEANS

Results

- Among the genes analyzed, the graSR complex (the mutations in L26F and T224I were found in the three isolates) was the one that demonstrated the greatest impact in the decrease of the susceptibility to vancomycin.
- □ No mutation in *wal*KR and *rpo*B was found simultaneously in all three isolates.

Summary of mutations

Isolate	graS	<i>gra</i> R	vraS	<i>vra</i> R	walK	<i>wal</i> R	rpoB
10	L26I T224I	V136I D148Q	-	-	A468T	-	V731A Y737F
		020/0	PAP-	AUC 0.92	to 1.09		
36	-	-	-	-	-	-	-
43	L26F 159L T2241	D148Q	- 	E59D AUC 0.98	R222K A468T to 1.17	-	H481N
69							1140411
	-	-	-	-	-	-	H481N
80	-	-	-	-	-	-	H481N -
80 SI4	-	-	-	-	-	-	H481N - H481N
80 SI4 SI11	-	-					H481N - H481N -
80 SI4 SI11 SI13	- - - L26F	- - - -		- - - -	- - - A117V		H481N - H481N - -

Gene	Samples	SCCmec*	PAP ratio	Amino acid Changes	Phenotypes	Previous studies
	10	111	0.92	L261	VSSA	YOO et al., 2013; ROCH et al., 2014
	43 SI13		0.98 1.19	L26F	VISA/ hVISA/ VSSA	YOO et al., 2013; ROCH et al., 2014
graS	43	III	0.98	159L	VISA/ hVISA	YOO et al., 2013; ROCH et al., 2014
	10 43 SI13		0.92 0.98 1.19	T224I	VISA/ hVISA/ VSSA	YOO et al., 2013; ROCH et al., 2014
	10	III	0.92	V136I	VSSA	YOO et al., 2013
<i>gra</i> R	10 43	111	0.92 0.98	D148Q	VISA/ hVISA/ VSSA	NEOH et al., 2008; HOWDEN et al., 2010b; DODDANGOUDAR et al., 2011; DODDANGOUDAR et al., 2012; YOO et al., 2013; ROCH et al., 2014
	10	III	0.92	S207G	-	N.D.
<i>vra</i> R	43	111	0.98	E59D	VISA/ VSSA	YOO et al., 2013; ROCH et al., 2014
	SI13	III	1.19	A117V	-	N.D.
walK	43	Ш	0.98	R222K	VISA	SHOJI et al.,2011; HIRAMATSU et al., 2014;
	10 43		0.92 0.98	A468T	VISA	SHOJI et al., 2011; HIRAMATSU et al., 2014
<i>rpo</i> B	43 69 SI4	 e	0.98 0.93 1.14	H481N	VISA/ hVISA	CUI et al., 2010; WATANABE et al., 2011; HAFER et al., 2012; HIRAMATSU el al., 2014
	10	III	0.92	V731A	VISA	HIRAMATSU el al., 2014
	10	Ш	0.92	Y737F	VISA	WATANABE et al., 2011; HIRAMATSU el al., 2014

Conclusions

Our findings demonstrate that no single mutation was found in any isolate, responsible for characterization of the phenotype. Mutations in walKR and rpoB genes, alone, did not demonstrate relevance. Although mutations in the graSR gene have shown the greatest impact on decreased susceptibility, the sum of the performance of other genes may also lead to the development of the hVISA phenotype.

alessandrocosilveira@gmail.com

Thanks!

