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We analyzed sequences of graSR, vraSR,walKR and rpoB genes in hVISA from Brazil. Five isolates showed muta-
tions in at least one gene. rpoBH481N and graS T224Iwere themost frequentmutations, followed by graRD148Q
and walK A468T. Our study reinforces the heterogeneity of genetic patterns among hVISA.
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The vancomycin Intermediate S. aureus (VISA) appears to result
from an adaptive process accompanied by mutations in different
genes (Alam et al. 2014; Saito et al. 2014) leading to a significant thick-
ening of the cell wall (Cui et al., 2006a). However, as this adaptation in-
volves a high biological cost, reduced susceptibility to vancomycin
frequently occurs heterogeneously in a bacterial population – hVISA
(Hiramatsu et al. 1997).

Although the exact mechanism and genetic events responsible for
hVISA phenotype are not clearly understood, modifications in graSR,
vraSR, walKR, which are regulatory genes of two-components systems,
and in the gene encoding the RNA polymerase beta subunit (rpoB) are
most frequently associated with this phenotype (Hafer et al. 2012;.
Howden et al. 2014). Our study aimed to analyze mutations in these
targets among S. aureus recovered from hospitals in Brazil.

Eight non-clonal hVISA isolates were obtained from clinical samples
collected from hospitals of Santa Catarina State, Brazil (November 2009
to October 2012).

Sequencing was performed in MiSeq (Illumina, Inc.). Quality was
evaluated by using the Phred/Phrap program. One error per 1000 bp
was considered acceptable. Sequences were analyzed and compared
using the BioEdit Sequence Alignment Editor Program version 7.2.5. The
vancomycin susceptible S. aureus (VSSA) isolate and N315 strain
(GenBank BA00018.3) were used as references. The sequences corre-
sponding to each gene were also compared to other sequences in
GenBank under the following accession numbers: AP002394.1 (Mu3),
BA000017.4 (Mu50), CP009361.1 (ATCC 25293-VSSA) and CP002120
.1 (JKD6008-VISA).

To induce vancomycin resistance, isolates were inoculated in BHI
broth for 330 minutes at 37 °C until the exponential growth phase.
Then, 50 μL from each tube was transferred to BHI tubes containing
1 μg/mL of vancomycin and incubated for 24 h at 37 °C. Tubes that
had an absorbance at 625 nm greater than 2 were considered to have
reached the stationary growth phase. Tubes that did not reached this
parameter were re-incubated at same conditions. Those presenting
the required turbidity were added to BHI with 2 μg/mL vancomycin,
and so on. Vancomycin Minimal Inhibitory Concentration (MIC) were
checked to ensure resistant phenotypes.

The hVISA phenotype was confirmed by PAP-AUC (Silveira et al.
2014). We also determined the VAN PAP MIC, which is the concentra-
tion of vancomycin, in PAP analysis, that inhibits bacterial growth (pop-
ulations b102 CFU/mL). A VAN PAP MIC ≥4 μg/mL is generally highly
associated with therapeutic failure in bloodstream infections.

To determine theMinimumBactericidal Concentration (MBC), 10 μL
from the well corresponding to MIC were plated on blood agar to
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Table 1
Mutations found and phenotypic characteristics of hVISA isolates.

Mutations ST MIC Days MVC PAP-AUC MBC MBC/MIC

graS graR walk vraR rpoB before after

SI4 - - - - H481N 5 2 30 20 1,14 1,22 64 32*
SI11 - - - - - 5 2 33 16 0,99 1,05 128 64*
SI13 L26F

T224I
- A117V - - 6 2 35 16 1,19 1,37 64 64*

10 L26I
T224I

V136I
D148Q
S207G

A468T - V731A
Y737F

30 1 28 16 0,92 1,09 64 64*

36 - - - - - 105 2 30 16 1,02 1,1 64 32*
43 L26F

I59L
T224I

D148Q R222K
A468T

E59D H481N 239 1 23 20 0,98 1,17 32 32*

69 - - - - H481N 5 2 28 20 0,93 0,99 64 32*
80 - - - - - 105 2 29 18 1,12 1,25 128 64*

ST= Sequence type; MIC=minimum inhibitory concentration (μg/mL); Days= time required to reach MVC; MVC (maximum vancomycin concentration)= highest vancomycin con-
centration tolerated (μg/mL); PAP-AUC= before and after exposure; MBC = minimum bactericidal concentration (μg/mL);* indicates isolates tolerant to vancomycin.
Neither isolates presented mutations in vraS or walR.
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observe bacterial growth. Isolates withMBC/MIC ratio ≥32were consid-
ered tolerant to vancomycin (Cázares-Dominguez et al. 2015).

Also, isolates were inoculated in BHI with 4 μg/mL vancomycin and
growth was evaluated at 24, 48, 72 and 96 hours, with macroscopic vi-
sualization of colonies and determination of MIC. Late-growth isolates
in medium containing vancomycin, with MIC ≥8 μg/mL, were consid-
ered slow VISA – sVISA (Saito et al. 2014).

This study investigated some potential genetic targets that may be
involved in hVISA phenotype (Table 1). Point mutations in genes
graSR, vraR,walK and rpoBwere found in five out of eight hVISA isolates.
Neither vraS nor walR were mutated in any of our isolates.

As expected, all hVISA were tolerant to vancomycin. Three isolates
(SI11, 10 and 43) were characterized as sVISA (Table 2), demonstrating
the presence of small or punctate colonies and a MIC ≥8 μg/mL after
96 hours of incubation.

We found substitutions in graSR already described by other authors;
some of which were also observed in VSSA isolates, suggesting they are
not reliable markers of hVISA phenotype. Nevertheless, the graR D148Q
mutation has been described in previous studies as missense mutation
characteristic of isolates with reduced susceptibility of vancomycin, es-
pecially in isolates with high MIC values (Doddangoudar et al. 2011).
Our results reinforce those findings.

The VraSR is an important stimulator of the expression of enzymes
involved in the biosynthesis of peptidoglycan (Mccallum et al. 2010).
As Doddangoudar et al. (2011), we did not find any mutations in vraS.
The E59D substitution in vraR, the most prevalent pattern of mutations
in VISA isolates observed by Yoo et al. (2013), was seen in one of our
hVISA.

The importance of WalKR as a regulator in bacterial cells is well
established (Dubrac et al. 2008). Its role in the hVISA/VISA has been
Table 2
Detection of the sVISA phenotype and CIMs according to the incubation time.

Isolate sVISA Colony MIC

24 h 48 h 72 h 96 h

SI4 no L 2 3 3 3
SI11 yes P 2 4 8 12
SI13 no L 2 4 4 4
10 yes P 1 1 4 16
36 no L 2 2 4 4
43 yes S 1 2 4 8
69 no L 2 4 4 4
80 no L 2 3 3 4

sVISA=slowVISA; colony:macroscopic aspect of the colony after 48 hours of incubation;
S = small; P = puntacte; L = large; MIC =minimum inhibitory concentration of vanco-
mycin (microdilution).
demonstrated by many authors around the world (Hafer et al. 2012;
Howden et al. 2014; Mwangi et al., 2007, Shoji et al. 2011, Watanabe
et al. 2011; Hiramatsu et al. 2014). We observed two hVISA with the
walK A468T and one with the walK R222K substitution. No mutation
was found in walR gene, corroborating data obtained by Shoji et al.
(2011), which may establish a secondary role of this gene in hVISA. To
the best of our knowledge, the A117V substitution inwalK gene (isolate
SI13)was not previously described andmay not be specifically linked to
hVISA phenotype.

Mutations in rpoBmay change the cell transcriptional profile drasti-
cally (Saito et al. 2014). Hiramatsu et al. (2014) demonstrated that the
most prevalent mutations among VISA occur in rpoB. Four hVISA in
our study presented rpoB mutated. A study by Watanabe et al. (2011)
showed that the rpoB H481N mutation was detected in 10 of 38 VISA
isolates from various countries. Three isolates presented this mutation
in our study; in two of them it was the only mutation found. The rpoB
mutations V731A and Y737F (isolated 10), do not seem to have great in-
fluence on the heteroresistance to vancomycin as they have been de-
scribed in VSSA and hVISA samples (Hiramatsu et al. 2014; Watanabe
et al. 2011). Among isolates presenting the sVISA phenotype, two (10
and 43) had mutations in rpoB, corroborating with results described
elsewhere (Katayama et al. 2017; Matuso et al., 2015; Saito et al. 2014).

The PAP ratio for our isolate ranged from0.92 to 1.19 and showed no
correlationwith the number ofmutations. Interestingly, the isolatewith
the highest number of mutations (#10) had the lowest PAP ratio.

The absence of mutations in some of our isolates is understandable
and reinforces the participation of numerous regulatory genes in con-
trolling cellwall synthesis. Our study reinforced theheterogeneity of ge-
netic patterns among hVISA. Although studies indicate that regulatory
genes graSR, vraSR,walKR and rpoB aremore often involved in this phe-
notype, to establish a single molecular marker as a predictor of resis-
tance remains a nightmare.
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